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Simple leaves show unexpected growth motions: the midrib of the leaves

swings periodically in association with buckling events of the leaf blade,

giving the impression that the leaves are fluttering. The quantitative kinematic

analysis of this motion provides information about the respective growth

between the main vein and the lamina. Our three-dimensional reconstruction

of an avocado tree leaf shows that the conductor of the motion is the midrib,

presenting continuous oscillations and inducing buckling events on the

blade. The variations in the folding angle of the leaf show that the lamina is

not passive: it responds to the deformation induced by the connection to the

midrib to reach a globally flat state. We model this movement as an asym-

metric growth of the midrib, which directs an inhomogeneous growth of the

lamina, and we suggest how the transition from the folded state to the flat

state is mechanically organized.
1. Introduction
1.1. Background
Since Gerardus Mercator, cartographers have learned that flattening the world

on a map is a complicated task involving non-trivial geometrical distortions.

Similar problems are encountered by leaves during their development: initially

curved they unfold to reach flatness, which is advantageous both for optimiz-

ing light capture and for decreasing the resistance of their surface to the wind.

Flatness is reached owing to an autonomous process of finely tuned growth,

which has been barely studied. In fact, most of the quantitative studies on

the growth of leaves have neglected curvature, considering the leaves to be

flat [1–4]. Very few studies have then focused on the movement that leaves dis-

play in space during their growth. And yet, during their expansion, these leaves

present many different motions. Plant motions have long been observed—as

early as before the common era by Androsthenos of Thasos [5] and later exten-

sively described by Darwin [6]. Some can be grouped as mature sudden

movements [7–9] that recently attracted the interest of physicists because

they are extremely quick, for example the dramatic fly trap snapping [10] or

the striking catapulting of ferns’ spores [11]. They can also be just at the

human time scale, such as the long-studied sensitive plants [12]. On a slower

time scale, plants also exhibit many motions that are related to their growth

and circadian rhythm [6,13,14]. The origins of these movements are still

debated, as is the relation between the movement and the shape of the plant

organ itself. Among them, the growth motions of leaves are of particular inter-

est because of their ecological importance as the leaves’ shape and positioning

are crucial to optimize their light capture and minimize their resistance to wind.

Here, based on our measurements, we propose that these growth movements

might be of importance in the mechanisms by which the leaf finally becomes

flat.
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1.2. The growth of leaves
The development of the primordium, protruding out of the

stem surface near the apical meristem, comes with two

broken symmetries: proximal/distal and adaxial/abaxial. The

first main central vein expands, and a lamina develops on

both sides. The broken adaxial/abaxial symmetry, which will

result in the top and bottom surface asymmetry of the leaf

(respectively), is first visible with an asymmetrical development

of the veins, which is more intense on the abaxial part. The geo-

metry of the free space around the developing leaf induces

different packing strategies and shapes [15]. A common one,

as in the case of the avocado tree leaf, is to fold in two with a

flat lamina folded around a curved central vein. During its

expansion outside the bud, the leaf will present globally some

inverse adaxial growth, curving the leaf in the opposite direc-

tion and opening the lamina before eventually reaching a

final flat straight state, typically in 10 days (see electronic sup-

plementary material, video S1). During this growth, the leaf

also presents more rapid movements, with typically a circadian

rhythm, and also quicker movements of particular interest: the

leaf curves back and forth across its midrib and flutters its blade

accordingly. We have observed these movements on a wide

range of plants; for example, the oak tree, hazelnut, citrus and

many tropical plants (http://www.msc.univ-paris-diderot.fr/

plant-dynamics/selection/selectionmov.html), including our

case study: the avocado tree Persea americana. In this paper,

we will characterize this phenomenon and investigate the

physical mechanisms involved in this widespread motion.

1.3. Question
The growing leaf is a composite object, made of epithelia,

mesophyll and veins. As already mentioned, the main veins

can develop considerably and protrude out of the abaxial sur-

face, creating the folding in the bud state [16]. In the blade,

mechanical constraints between the various elements have

been proposed to explain the creation and the geometry of

the reticular vein networks and in particular their connection

angles [17]; and these lignified veins are ascribed to be the

mechanical support of the leaf. The differential growth of

the blade along its own surface has also been recognized as

the origin of undulating leaf borders [18,19], and of the par-

ticular shape of petals [20]. In evolutionary terms, flower

petals are believed to be modified leaves [21]. Their motions

have recently been found to originate from blade growth [22].

Other leaf motions, such as rolling and unrolling, have been

explained also by the variation in the double curvature of

the blade [23]; in these cases, the motion could also be

ascribed to the effect of the dense parallel veins in the leaf

blade. In the case of avocado, as for the common case of

simply folded in two leaves, only the central vein protrudes,

and we can consider the leaf as made mostly of a roughly

cylindrical midrib (which could itself be viewed as a compo-

site beam [24]) and two symmetric quasi-two-dimensional

surfaces (the blade or lamina) attached to it. In this frame-

work, the role of secondary veins is ‘absorbed’ in the

lamina. The two growth effects, of the lamina and the

midrib, are potentially effective in leaf development [25].

The main aim of this study was to understand the inter-

play of these two growths in the development of the leaf

and in generating the motions of leaves.

In the following, we first detail our experimental method

and results. Then we present three toy models representing
three different limit cases. Finally, we use these toy models

to discuss the experimental results.
2. Material and methods
2.1. Experiment
We focused on the leaf of the avocado tree. Avocado leaves are

typical of simple leaves and they display strong and characteristic

movements. The analysis was made easier by the fact that this

organ is large (many centimetres) and can be observed over several

days of development, with a large growth ratio (approx. 10). Typi-

cal time scales from the emergence of the new leaf to maturity were

approximately two weeks. Leaves were marked a few days after

emerging by a grid (made up typically of 100 or more markers

spaced by approx. 5 mm) of red fluorescent oil-based paint—the

viscosity of the mix was optimized to follow the leaf during

growth. The development was followed via time lapse photogra-

phy. Every 15 min two snapshots were taken simultaneously

from two spatially shifted cameras. The flash light was filtered in

green, to protect against phototropic effects, as well as guaranteeing

maximum contrast for the red markers.

2.2. Three-dimensional reconstruction
The fluorescence of the markers allowed segmentation of the

image based on a colour scale. The positions of the markers

were tracked separately in each two-dimensional image stack

by using singular value decomposition and the Longuet–

Higgins algorithm [26]. This provided at each time step the

two-dimensional position of each marker i in the left camera

(xl
i(t), yl

i(t)) and in the right camera (xr
i (t), yr

i (t)). Typical stereo-

scopic techniques are designed to first calibrate the cameras

and then obtain three-dimensional positions owing to both of

the two-dimensional positions obtained for each camera, and

the cameras’ calibration [27]. For calibration, we took different

snapshots of a grid with known three-dimensional positions.

Next, for each camera, we computed the camera projection

matrix from the known three-dimensional scene points and the

corresponding two-dimensional image points using direct

linear transformation (algorithm of Trucco & Verri [28]). Finally,

we performed the reconstruction from the two-dimensional pos-

itions (xl
i(t), yl

i(t), xr
i (t), yr

i (t)) and the calibration matrices by

using the Kim Daesik algorithm (https://github.com/tjrantal/

direct-linear-transformation/blob/master/octavetest/daesikweb/

reconstruction.m) in order to get the three-dimensional

coordinates (xi(t), yi(t), zi(t)).
Figure 1a shows an example of the two shifted snapshots at a

given time as well as the corresponding three-dimensional recon-

struction of the leaf (figure 1b). See also the electronic

supplementary material, video S2, for a full reconstruction with

time. Full tracking and quantification of the experiment is

demanding but we checked qualitatively a dozen times that the

observed phenomenon is generic, and that it is also observed

on many other species.

2.3. Quantitative measurements
From the coordinates obtained from the collection of markers, we

can reconstruct the geometric surface and its corresponding

parameters such as local angles, local area, mean and Gaussian cur-

vature, etc. Delaunay triangulation of our markers has defined a set

of triangles whose area was monitored in order to access the local

growth of the lamina as a function of time. Two other measures

are of particular interest: the midrib curvature (kk) and the folding

angle of the blade (w). By convention, kkwas defined as the deriva-

tive of the local vertical angle as a function of the curvilinear

abscissa going from the base to the end of the leaf. This means

http://www.msc.univ-paris-diderot.fr/plant-dynamics/selection/selectionmov.html
http://www.msc.univ-paris-diderot.fr/plant-dynamics/selection/selectionmov.html
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Figure 1. Experimental set-up. (a) A typical view from the two spatially shifted cameras. (b) The corresponding three-dimensional reconstruction. We label as w the
folding angle of the blade and as kk the curvature of the midrib. (c) The corresponding two-dimensional projections. (Online version in colour.)
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that a concave (respectively, convex) shape has a positive (respect-

ively, negative) curvature. The folding angle w indicates the

deviation from the flat state, therefore it goes from 08 to 908 when

the leaf goes from flat to completely folded. The sign is defined

to match the curvature definition: it is positive (respectively, nega-

tive) if the leaf is folded downwards abaxially (respectively,

upwards adaxially). The complementary angle to the folding

angle is labelled as the opening angle. We also measured Dzg,

which is the vertical position of the barycentre of the midrib,

with respect to the stem, as an indication of the mean position in

space. For quantification of the leaf curvature, one could use

either the local curvature or the total deviation (integration of the

local curvature along the object). Biologically speaking, a flat sur-

face is useful, for example for light capture or for minimizing the

surface, and it is this local property which is meaningful. Therefore,

in this paper, we will define and quantify the so-called ‘flatness’ by

using Gaussian curvature, which is a local property.
3. Experimental results
3.1. Global growth
Figure 2 displays the mean areal growth over the main expan-

sion period. It shows that, even if the shape of the leaf does

seem to change during this process, the average growth is

rather inhomogeneous. Some parts expands much less, in par-

ticular the base, which stops growing quickly. On the contrary,

the blade is developing more at the front periphery, which cor-

responds to a global opening of an originally folded lamina on

a curved midrib.

3.2. Swinging and fluttering
Figure 3 focuses on the typical results obtained for a given point

of the midrib located in the middle of the expansion region, but

note that the same behaviour is observed at the other points.

Midrib local curvature and local folding angle evolution are

plotted as a function of time. To put these results in perspective,

we also plotted in figure 3a the averaged midrib vertical pos-

ition. One sees clearly the 24 h cycle, which can be ascribed to

the circadian variation of the plant’s turgor pressure, plus a

small perturbation during the night. On the local midrib
curvature, one can see the same circadian oscillation, plus a

complete oscillation during the night (which we call ‘swinging’,

kk changing sign). The small oscillation about the vertical pos-

ition during the night can thus be ascribed to the effect of

changing the leaf curvature on the average position. On the

local folding angle, we observe the same oscillations as for the

curvature, except that at each change of sign of the curvature

we observe a jump in the angle (which we call the ‘fluterring’,

w changing sign). As qualitatively visible in the preliminary

observation (see electronic supplementary material, video S1),

the midrib curvature is correlated to a global change of concav-

ity of the blade, associated with buckling events for the lamina.

Every time kk changes sign, the whole blade buckles with the

angle w jumping from a typical value of+58 to its opposite.

The same data (folding angle w as a function of kk along time)

are plotted against each other in figure 4. This figure shows a

gap in the folding angle. The essential points are first that the

gap does not appear in the midrib curvature and second that

kk and w otherwise vary proportionally. During the early

days of leaf development when growth is more significant,

movements are ampler and buckling is stronger. Conversely,

when growth tails off with time, buckling becomes more diffi-

cult to achieve and eventually disappears (see electronic

supplementary material, videos).

3.3. Gaussian curvature
Figure 5 displays the Gaussian curvature computed for each

marker on the lamina. The error bars indicate the natural stan-

dard deviation over the lamina. The inset shows the time

period corresponding to figure 3 and more generally to the

young stage of the leaf: Gaussian curvature is changing period-

ically while always staying significantly positive. At larger time

scales, Gaussian curvature tends to a smaller and smaller

value, indicating that the leaf is asymptotically going towards

the flat state. Although the surface is growing in time, an esti-

mation of the global angular deviation (defined as the

integration of a typical curvature along a typical length)

remains roughly constant (see electronic supplementary

material, figures S19 and S20). This is only possible because

the Gaussian curvature is decreasing. Note that the finite

http://rsif.royalsocietypublishing.org/
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time of growth (typically approx. 20 days) does not allow per-

fectly zero curvature to be reached, therefore a finite but small

residual Gaussian curvature remains at the end of leaf growth.
3.4. Anisotropic growth
From our observations, it is clear that the midrib extends

more in length than in width (see also electronic supple-

mentary material, figure S10). We quantified the order of

magnitude of this ‘anisotropic’ growth of the midrib as the

ratio of the longitudinal strain to the orthogonal strain:

Agrowth ¼ (lk � 1)=(l? � 1), where lk and l? are the stretches

in the parallel and perpendicular directions, respectively. For

avocado we measured Agrowth � 10 (lk� 7, and l?� 1.5).
4. Toy models
To clarify the meaning of these results, we compare the devel-

opment of the leaf with possible non-living unfolding

mechanisms. In this section, we derive three different toy

models. We investigate first the unfolding as a consequence

of pure differential growth in the midrib connected to a pas-

sive lamina (model 1), then pure lamina growth (model 2)

and finally an effect of eccentric growth in the midrib on

the local attachment lamina angle (model 3).
4.1. Model 1: unfolding by pure differential growth
without a centro-lateral gradient of in-plane
growth in the lamina

In this model, the motion is induced exclusively by a gradient

of growth perpendicular to the surface of the leaf (in the

http://rsif.royalsocietypublishing.org/
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thickness) but with no gradient of in-plane growth. The

difference in growth between the abaxial side and the adaxial

side can either be localized at the vein and imposed on the

lamina or localized in the lamina and imposed on the vein.

The mathematical terminology for this change of shape is

an isometric deformation combined with a homogeneous

dilatation [29]. The leaf, which consists of two thin shells join-

ing along a curved but planar vein, can be idealized by two

surfaces connected along a planar curve, each of them lying

on a different cone; for this simpler geometry, one mode of

isometric deformation with homogeneous dilatation is ana-

lytically tractable and the relation of the folding angle to

the midrib curvature can be computed. For thin shells, iso-

metric modes of deformation are known to be the most

economical energetically when they are possible [30,31];

such modes can be typically actuated by deforming a curve

belonging to the shell, such as the midrib in the blade.

A folded leaf can be approximated by a surface with a

one-parameter (r) family of isometric deformations Sr, each

surface being constituted by two blades Sr,1 and Sr,2 situated

on the mirror image of two cones and meeting at the curved

midrib (figure 6):

8u [ � arcsin
R1

R0

� �
, arcsin

R1

R0

� �� �
,

8R [ ½R0 cosðuÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � R2
0 sinðuÞ2

q
,R0�,

S1,rðu,RÞ ¼ R cos
u

r

� �
r, sin

u

r

� �
r,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� �

� R0ð0,0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Þ

and S2,rðu,RÞ ¼ R cos
u

r

� �
r, sin

u

r

� �
r,�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� �

þ R0ð0,0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Þ,

with R0, R1 strictly positive and r in ]0,1[.

r ¼ Rk/R0 is the dimensionless parameter which quantifies

the ratio between the radius of curvature of the vein situated

between the two blades while the leaf unfolds (Rk) with respect

to its value when the leaf is completely folded (R0). R1 is a con-

served geometrical characteristic of the lamina; it corresponds

to the distance between the middle point of the main vein and

the boundaries of the lamina (figure 7).
Given this framework, the folding angle (i.e. the half

apical angle of the cone) w is given by: w ¼ arcsin (r), whereas

the curvature of the vein at the junction of the blade (along

the R ¼ R0 line) is given by kk ¼ 1/(rR0). Therefore, the

folding angle reads as a function of the midrib curvature,

w ¼ arcsin
k0

kk
, ð4:1Þ

where k0 ¼ 1/R0 is the curvature of the vein when the leaf is

totally folded. This relation would apply in particular to a

passive lamina subjected to the anisotropic growth of the midrib.

4.2. Model 2: unfolding by a centro-lateral gradient
of in-plane growth of the lamina

If the lamina alone is involved in the global flattening of

the leaf, this could be achieved by a centro-lateral gradient

of the in-plane growth. The hypothesis here is to neglect

completely the rigidity of the midrib and to consider only a sur-

face going from curved to flat via pure orthoradial growth.

In this second toy model, we consider the simplest case of a

symmetrical spherical side cap of Gaussian curvature kG.

Mathematically, it is easier to detail the inverse transformation:

let us consider the flat disc D parametrized by the two cylind-

rical variables (r, u); r [ [0, R], u [ [0, 2p]. In Cartesian

coordinates, and as shown in figure 7, the application F from

the disc D to the subset of sphere S of Gaussian curvature

kG reads

F:
r cos u
r sin u

0

0
@

1
A!

1ffiffiffiffi
kG
p sin (

ffiffiffiffiffiffi
kG
p

r) cos u

1ffiffiffiffi
kG
p sin (

ffiffiffiffiffiffi
kG
p

r) sin u

1ffiffiffiffi
kG
p ( cos (

ffiffiffiffiffiffi
kG
p

r)� 1)

0
BB@

1
CCA: ð4:2Þ

The result is that the orthoradial metric of the flat

surface which transforms into a part of a sphere is

G ¼ (1=kG) sin2 (r
ffiffiffiffiffiffi
kG
p

). Conversely, this means that the

orthoradial growth necessary to flatten the curved sphere of

Gaussian curvature kG verifies the following stretch:

l(r) ¼
r
ffiffiffiffiffiffi
kG
p

sin r
ffiffiffiffiffiffi
kG
p : ð4:3Þ
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This toy model shows that the lamina alone can manage to

overcome a given Gaussian curvature kG if an appropriate

centro-lateral gradient of in-plane growth (stretch l(r))

develops in the lamina.

4.3. Model 3: unfolding by anisotropic differential
growth of the midrib alone

Finally, one can consider only the midrib, neglecting comple-

tely the rigidity of the lamina. In this case, the lamina is just

seen as a prolongation of the midrib, extending from attach-

ment points on the midrib. In this picture, the opening angle

of the lamina is directly linked to the evolution of these

‘attachment points’. Considered by itself, the motion of

swinging of the midrib can be explained by a differential

growth between the abaxial and the adaxial parts similarly

to a bimetallic strip. But the midrib is three dimensional,

inducing an effect in the perpendicular direction. Therefore

differential growth will induce a change of both longitudinal

curvature of the midrib and perpendicular opening of the

lamina at the same time.

For the sake of simplicity,1 one can consider the midrib to be

analogous to a simple rectangular bimetallic strip. Timoshenko

[32] developed the corresponding theory long ago. One can

adapt it for a midrib made of two components which have

different growth rates _e1 and _e2, and comparable thickness h
varying slowly compared with the curvatures [33]; then, for

each dimension (k or?) the kinematic bimetallic strip equation

reads

h@tkk=? ¼
( _e1 � _e2)k=?

4
: ð4:4Þ

As Timoshenko pointed out, the magnitude of the ratio of

the Young modulus does not produce any substantial effect

on the curvature of the strip, which is due to differential

growth only. What enables us to make the link between the

two curvatures is then the relation between the differential

growth longitudinally or perpendically characterized by the

differential growth anisotropy Adiff ¼ (( _e1 � _e2)k)=(( _e1 � _e2)?).

Given a typical length scale ‘ localizing the perpendicularcurva-

ture, one can rewrite the equation as a function of the local

lamina folding angle,

@t2w

@tkk
� 2‘

Adiff
: ð4:5Þ

This equation is another (proportional) prediction of interde-

pendence of the folding angle at the midrib and midrib

curvature.
5. Discussion
During unfolding, the coordination of growth rates over a

whole leaf has to be precisely tuned to avoid overstretching

and tearing of the tissue. However, similar to the morphogenes

in the French flag model that spread from localized sources, the

unfolding impetus might originate in a localized area of the leaf

and propagate over the whole leaf. Unravelling this organiz-

ation based on kinematics is made possible by both

scrutinizing minute desynchronizations during growth and

comparing growth with simplified mechanical models where

one part of the leaf dominates the other, whose rigidity is

supposed to be nil.
5.1. Comparison with idealized models
5.1.1. Toy model 1 shows that the lamina cannot be passive
For maize, the unrolling of the midrib has been shown to be

the motor during the unfolding of the leaf [24]; for avocado, it

is natural to start by investigating the first toy model where

the blade is perfectly passive. Equation (4.1) describes what

one can observe by building an artificial leaf (see electronic

supplementary material, figure S11), and trying to induce

its motion by forcing the midrib. When the midrib curvature

is reduced, one observes that the folding angle increases, up

to the point where the two laminae are in contact (w ¼ p/2).

This is the opposite of what is observed in our experimental

data. Indeed, in figure 4, we see that the passive blade

hypothesis calculation is erroneous in two ways: the variation

of the folding angle versus the midrib curvature has the

wrong monotony, and it displays a jump in the local curva-

ture instead of a gap in the folding angle. Pure differential

growth between the sides of the blades or the sides of the

vein cannot describe the unfolding; an in-plane gradient of

growth is necessary.
5.1.2. Toy model 2, alone, is not likely to be compatible
with the reversion of folding

Starting from a globally positive Gaussian curvature (with a fold

around a curved midrib), a decrease in curvature of the midrib,

together with a decrease in the folding angle as observed in

figure 4, corresponds to a global decrease in the Gaussian curva-

ture. This can be achieved only by a relative extension of the

lamina border, far from the midrib, while the lamina near the

midrib remains relatively unchanged. Keeping this relative

extension of the leaf periphery would lead at some point to a

flat leaf, with a null Gaussian curvature. The gradient of in-

plane growth is imposed by the initial Gaussian curvature. The

inset of figure 2 shows a fit of equation (4.3) with kG ¼ 8.9W22,

where W is the width of the leaf; for approximately 10 cm the

http://rsif.royalsocietypublishing.org/
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Figure 9. Gaussian curvature as a function of blade growth: elliptic versus
hyperbolic solutions. (a – c) We represent schematically the growth of a
blade by the edge (green lines) while keeping the midrib at constant
length (red line). On the left side is the projection of the surface, while
the three-dimensional shape is on the right. (a) Gaussian curvature is positive
and the solution is elliptically curved to one side or the other. After growth
(1) we reach a flat state. (b) Flat state: Gaussian curvature is null. If one
reverses growth by extending the midrib (2), we can go back to one of
the two solutions of (a). If growth continues on the edge (3), we get to
(c). (c) Gaussian curvature is negative, and there are two elliptic solutions
(a curved surface, or twisted on the edge). These shapes, most commonly
the first one, can be observed in abnormally grown leaves (see electronic
supplementary material, figure S18). (Online version in colour.)
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Gaussian curvature is approximately 1000 m22, which is

consistent with what has been measured in figure 5.

The issue is that, if continued, it would end up in the undu-

lation of this lamina border, with a global Gaussian curvature

becoming negative (figure 9), as observed elsewhere [19,22,34].

But in the case of typical leaves, such as the avocado leaf, the

border does not become wavy, and it eventually becomes

completely flat. During the oscillations, we also observe that

Gaussian curvature always remains positive, as shown in

figure 5. When the midrib curvature changes sign, the folding

angle simultaneously changes sign also. It is still possible that

the lamina extension necessary to bring the global Gaussian

curvature to zero (flat leaf) would then invert its variation to

induce a positive Gaussian curvature again. This requires

inverse growth, where now the lamina near the midrib extends

relatively to the lamina border. This is indeed possible, and
even necessary, but it would be very lucky that it would fold

each time on the opposite side: it could fold again on the orig-

inal side, keeping the midrib curvature with the same sign.

Therefore, this mechanism, alone, is unlikely.

5.1.3. Toy model 3 reveals under which conditions the midrib
could direct the lamina

The brutal change in the folding anglew (figure 4) suggests that

it is directed from outside. During the inversion, the vein

imposes for each half-blade both the position of the border

and the angle of attachment; using the terminology of differen-

tial geometry, both the non-free boundary and the tangent

plane at the boundary are imposed. While it is fairly easy to

deform a convex surface isometrically by actuating it along a

non-closed curve [29,35], if the direction of the tangent plane

to the curve is simultaneously imposed and there are no iso-

metric modes of deformation in general, the surface has to be

stretched or compressed to satisfy the boundary conditions.

These conflicting constraints at the boundary are exactly the

ones of our third toy model. Because the length scale ‘ of

equation (4.5) on which the fold is localized is typically the

radius of the midrib, this indicates that the folding angle of

the lamina should vary linearly with the longitudinal curva-

ture of the midrib and that the slope of this variation should

be the order of magnitude of the diameter of the midrib. In

the experiment (figure 4), we indeed observed a linear depen-

dence of the folding angle as a function of the midrib curvature

even if there was a jump at the buckling event. The anisotropy

of differential growth necessary to reproduce the data can be

estimated as Adiff � 0:1 (see figure 4 and electronic sup-

plementary material, figure S15). Although it was proposed

that cells have independent growth mechanisms in different

directions [36], this measure is much lower than the anisotropy

Agrowth of in-plane growth of the vein measured

experimentally.

Still, the fact that the folding angle of the lamina follows

qualitatively the variation in the connection angle makes the

midrib a good candidate to direct the global opening of

the whole lamina. Qualitative consistency of this scenario can

be demonstrated by experimental cuts at strategic times in

the development of the leaf: different curvatures at different

places induce different folding angles (see electronic sup-

plementary material, figure S17). The proposed mechanism is

reminiscent of what has been observed previously in the the

maple bud, where both lamina folds and longitudinal curva-

ture of the midrib are associated with an asymmetric midrib

growth, the abaxial side growing much more than the adaxial

one [16]; similarly, the reverse motion when the avocado leaf

unfolds, with its fluttering oscillation, would result in reverse

and oscillating asymmetric growth between the adaxial–abaxial

sides of the midrib.

5.2. Midrib is forcing the independent buckling
of the two half-blades

Model 3 suggests that the reversal is monitored by both an

active change of the vein curvature and an increase of the

target opening angle along the midrib: first the target opening

angle is low, having it frustrated, while keeping the half-blades

non-frustrated (close to their natural curvature) is the most

advantageous energetically; at some point, as the target

opening angle increases, the frustration becomes too high

http://rsif.royalsocietypublishing.org/
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and another equivalently energetic solution arises correspond-

ing to an inverted frustrated half-blade and a non-frustrated

opening angle; the jump from one equivalent configuration

to the other is called buckling. In the case of the buckling of Dio-
naea muscipula, Forterre et al. [10] developed a toy model

illustrating the balance between bending and stretching. Simi-

larly, here, we have a balance between stretching, bending and

target opening angle frustration. The typical deformation of the

blade at the transition is h
ffiffiffiffiffiffi
kG
p ≃ (0:1 cm)=(5 cm) ¼ 0:02, where

h is the typical thickness of the blade [37]. As the deformations

are quite small, it makes them difficult to measure experimen-

tally; only the time scales of the movement can be compared

with the theoretical predictions.

5.2.1. Time scales
Quantitatively, growth-induced motions are limited by the

poroelastic time scale [7–9]. When the time constant of a

phenomenon is greater than the poroelastic limit, it is always

induced by growth, while if the time constant is less it is necess-

arily an accelerated event induced either by buckling or by other

mechanical instability. For a typical plant tissue of size L, For-

terre et al. estimated the poroelastic time scale to vary with

tissue size as tp � 0.077� 109 m2 s21 � L2 [7]. In our case, the

midrib with size of a few millimetres evolves in a few hours,

which is very slow compared with the poroelastic limit

(t(3mm) � 10 min). On the contrary, the lamina with size of

approximately 1 mm flutters very fast (approx. 18 min21;

figure 3), flirting with or crossing the poroelastic limit

(t(1mm) � 80 s).

This demonstrates that the midrib curvature changes with

growth, whereas the lamina takes advantage of a mechanical

phenomenon, such as buckling instability, to flutter fast.

Figure 4 shows that the midrib curvature not only changes

sign but also does it continuously, while the blade folding

angle shows a jump. Together with the time scales, this indi-

cates that the midrib changes shape with inhomogeneous

growth, while the blade is forced by this midrib into fast buck-

ling. In this picture, the lamina, at least during the duration of

the buckling, is acting passively, although at a longer time scale

the deformations that it undergoes could act as a guide and

incentive for the variation in its growth.

5.3. Mechanosensitivity
5.3.1. Feedback
It is now well established that growth is strongly dependent on

the local mechanics of the tissue (see, for example, [38,39] for

recent reviews or [40] for recent results on the rheology of

leaves). Here, the contrasting movement between the natural

closure of the lamina when the midrib curvature is reduced

and the opposite opening angle at the contact with the

midrib will create a local stress. This stress must induce a

local growth reaction to release it, reopening the angle locally.

We can then imagine that such a local reaction propagates in

the lamina so that finally the whole lamina is expanding,

especially at its periphery.

This is a remarkable phenomenon: by some means, the

midrib manages to mechanically direct the lamina at a distance

to remain oscillating between an enhanced growth at the per-

iphery (state (1) of the scenario discussed in figure 9) and an

enhanced growth at the midrib (respectively, state (2)), in a

very controlled way through the angles at the boundary.

By doing so, it forces the leaf to change its global Gaussian
curvature, which would remain the same if the lamina was

passive, first by decreasing it (1) and then increasing it again

(2). As the oscillation of the curvature reduces in time, so

does the oscillation in the inhomogeneous growth of the

lamina, around the symmetric flat state. This decreasing oscil-

lation of the curvature is thus an efficient conducting signal to

get closer and closer to a flat surface, as observed in figure 5.

Interestingly, the folding angle also decreases slightly as a func-

tion of time (see electronic supplementary material, figure S21).

Although of minor magnitude, this is another contribution to

the final flatness of the leaf.

5.3.2. Influence of gravity
As described in the results section, the buckling events disap-

pear after some time. One could ask if it is harder to move the

leaf due to its increasing weight. Let us consider a leaf extending

to a typical size L, its surface being S and its thickness being h.

The simplest scaling for Gaussian curvature is kG/ 1/L2. The

bending energy involved in buckling scales as Ebending/SEh3kG.

On the other hand, the gravitational potential energy scales as

Egravity/ShrV gL, where rV is the volumetric mass density of

the leaf and g is the gravitational field. Overall, the ratio of the

two energies reads Egravity/Ebending/ L3rVg/(Eh2). The two

terms become comparable only for a critical value
ffiffi
½

p
3�Eh2

rVg
.

For typical plant values (E � 300 MPa [41], h � 1 mm, rV� 103

kg .m23), which gives Lc�30 cm.

This scaling argument indicates that the weight can be

neglected in most of the development as the size of the leaf

is often significantly smaller than Lc.

The combination of increasing length and the reduction in

the Gaussian curvature makes the two energetic terms of bend-

ing and gravity comparable at the end of development as the

full size of a leaf approaches Lc. This could potentially explain

the tailing off observed in the buckling events at the end of the

growth period, although we still believe it is most probably pri-

marily due to a decrease in available energy as the growth

process is also progressively stopping.

5.3.3. Absence of oscillations in tortuous plants
The relation of the oscillations to the convergence towards a flat

state can be checked in the special case of tortuous plants, and

in particular the twisting hazel. The simple folding in two

leaves of the hazel plant presents the same typical motions of

the avocado leaf (see electronic supplementary material,

video S3, or online videos (http://www.arkive.org/

hazel/corylus-avellana/video-04.html)). However, in the

case of twisting plants none of these oscillations are observed.

Only a constant opening is observed, leading finally to a non-

flat leaf, interestingly still with a positive Gaussian curvature

(see electronic supplementary material, video S4). Another

argument is given by the observation of an avocado leaf

constrained by a too large midrib curvature; this leaf could

not achieve buckling movements and ended up exhibiting

an undulated, negative Gaussian curvature surface at its

periphery (see electronic supplementary material, figure S16).
6. Conclusion
In conclusion, we have revealed the typical motion observed in

young growing simple leaves, which seems common to many

species. The blade flutters as a consequence of the directing

http://www.arkive.org/hazel/corylus-avellana/video-04.html
http://www.arkive.org/hazel/corylus-avellana/video-04.html
http://www.arkive.org/hazel/corylus-avellana/video-04.html
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motion of the midrib, which swings back and forth. The main

observations are buckling events, the proportionality of the

opening angle to the midrib curvature and the convergence

of the leaf towards a flat state without undulation at its peri-

phery. We provide a parsimonious understanding of these

motions as a periodic asymmetric growth of the midrib,

directing a periodic inhomogeneous growth of the lamina,

enhanced first at the periphery during the opening of the leaf

and then near the midrib during the closing. This inhomo-

geneous growth is controlled by the midrib via geometry and

locally induced stresses at the connecting angle. This mechan-

ism is parsimonious as it derives only from the reversal of the

motions observed in the first formation of the leaf inside the

bud. This is an interesting mechanism that provides plants

with the opportunity to achieve their posture regulation by

combining the joint goals of flattening the blade surface and

straightening the midrib line, in order to reach a final flat shape.
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Endnote
1Although a biologically realistic geometry of the midrib can be mod-
elled rigorously through conformal mapping (see electronic
supplementary material), we discuss here the pedagogical case of
the bimetallic strip (figure 8). In the electronic supplementary
material, we also prove that the two approaches are equivalent.
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